PCI の病理

POBA

硬い線維性プラークは圧縮されず、プラークとプラークのない健常部位が引き伸ばされ、 やわらかいところが解離する。さらにやわらかいプラーク成分が末梢へ飛び散る。

その結果として拡張される。

そして、中膜を起点として修復が始まる。

過剰になると再狭窄

(病理学的に経時的な negative remodeling は証明できない、postmortem しか見られない。)

PCI

ステントを入れても、plague free wall が拡張され、硬いところが残る。

新生内膜の増殖が始まる

中膜から平滑筋細胞が遊走してくる。(extra cell matrix を出しながら。)

その一方で

ステントストラッドが 平滑筋細胞へ圧をかけている。

圧が平滑筋増殖につながる。

ステントストラッドから 金属イオンが流出してくる。

異物として認識されることにより、

1)マクロファージが遊走してくる。

2) Tリンパ球を刺激する。

その後、整った平滑筋細胞を認める。(ストラッド周囲がコンパートされる。) 新生内膜の安定化と径の拡大を認める。

DES

45日経っても新生内膜を認めず、薄いフィブリンの蓄積のみ。 しっかりとした薬物治療(抗血小板療法)が必要である。

冠動脈の生理

冠循環は 導管血管 抵抗血管(小動脈、細動脈) 容量血管(毛細血管、細静脈)から成り立ち、導管血管・抵抗血管は自動調節されている。NO は導管血管に作用し、アデノシンは抵抗血管に作用する。冠動脈造影では導管血管の狭窄を評価できる。狭窄により、冠環流が低下すると、抵抗を下げて血流を保つ自動調節は働く。狭窄の進行により、冠予備能の SD の幅が減少し、狭窄の影響出やすくなる。冠予備能の評価には、CFR(絶対的冠血流予備能)と FFR (冠血流予備量比)が指標となる。no-reflow の成因として、distal embolism に起因するものと、coronary capacitance に起因するものがある。